A perforated microhole-based microfluidic device for improving sprouting angiogenesis in vitro
نویسندگان
چکیده
Microfluidic technology is an important research tool for investigating angiogenesis in vitro. Here, we fabricated a polydimethylsiloxane (PDMS) microfluidic device with five cross-shaped chambers using a coverslip molding method. Then, the perforated PDMS microhole arrays prepared by soft lithography were assembled in the device as barriers; a single microhole had a diameter of 100 μm. After injecting type I collagen into the middle gel chamber, we added a culture medium containing a vascular endothelial growth factor (VEGF) into the middle chamber. It would generate a linear concentration gradient of VEGF across the gel region from the middle chamber to the four peripheral chambers. Human umbilical vein endothelial cells (HUVECs) were then seeded on the microhole barrier. With VEGF stimulation, cells migrated along the inner walls of the microholes, formed annularly distributed cell clusters at the gel-barrier interface, and then three-dimensionally (3D) sprouted into the collagen scaffold. After 4 days of culture, we quantitatively analyzed the sprouting morphogenesis. HUVECs cultured on the microhole barrier had longer sprouts than HUVECs cultured without the barrier (controls). Furthermore, the initial distribution of sprouts was more regular and more connections of tube-like structures were generated when the microhole barrier was used. This study introduces a novel microfluidic device containing both microtopographic structures and 3D collagen. HUVECs cultured with the microhole barrier could form well-interconnected tube-like structures and are thus an ideal in vitro angiogenesis model.
منابع مشابه
Self - directed 3 D angiogenesis
Engineering of thick tissue constructs is often required in regenerative medicine applications. While building these thick tissue constructs, a complex vasculature is needed to deliver oxygen and nutrients to cells. One of the strategies for stimulating the growth of new blood vessels (angiogenesis) within these constructs includes the insertion of angiogenic growth factors into the scaffolds. ...
متن کاملMorphogenetic Mechanisms of Endothelial Cells During Lumen Formation in Sprouting Angiogenesis
Different mechanisms such as cell migration, proliferation, branching, anastomosis, and lumen formation occur during the angiogenesis process. Lumen formation is one of the critical mechanisms which is not only necessary for the functional plexus but also for continuing of angiogenesis process. Although multiple studies investigated this mechanism during the angiogenesis process in both in vivo...
متن کاملEngineering Anastomosis between Biological Perfused Vessel Networks and Endothelial Cell-lined Microfluidic Channels
This paper reports, for the first time, a microfluidic system that can reproduce the vascular anastomosis between a perfused vessel network in a 3D tissue chamber and an endothelial cell (EC)-lined microfluidic channel. By using a decoupling design of the microfluidic device, the physiological microenvironment including both the interstitial flow for vasculogenesis and shear stress for EC linin...
متن کاملIn vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients.
Sprouting angiogenesis requires a coordinated guidance from a variety of angiogenic factors. Here, we have developed a unique hydrogel incorporating microfluidic platform which mimics the physiological microenvironment in 3D under a precisely orchestrated gradient of soluble angiogenic factors, VEGF and ANG-1. The system enables the quantified investigation in chemotactic response of endothelia...
متن کاملMicrofluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix.
Current in vitro systems mimicking bone tissues fail to fully integrate the three-dimensional (3D) microvasculature and bone tissue microenvironments, decreasing their similarity to in vivo conditions. Here, we propose 3D microvascular networks in a hydroxyapatite (HA)-incorporated extracellular matrix (ECM) for designing and manipulating a vascularized bone tissue model in a microfluidic devic...
متن کامل